Semi-automatic Generation of Active Ontologies from Web Forms

Martin Blersch, Mathias Landhäußer, and Thomas Mayer
How can we automatically add new features to intelligent assistants?
EASIER: A Framework to Connect Intelligent Assistants with Arbitrary Web Forms

- Generates 65% of the software automatically
- Correctly answers 70% of the queries with the generated software
Active Ontologies / Active Semantic Network

- Combine the modelling of domain knowledge with an execution environment
- Different node types
 - Leaf nodes
 - Non-terminal nodes
- Bottom-up processing of utterances

- Supporting new features requires extending the ontologies or even building new ones

→ Manual & labor-intensive steps

"I need a hotel room in Gothenburg from Monday to Tuesday."
"I need a **room** in **Gothenburg** for **two days**."
Related Work

Active: A Unified Platform for Building Intelligent Applications (Guzzoni)

FEATON: Builds Ontologies from Forms semi-automatically (Berlanga et al.)

OntoBuilder: Extracts Ontologies from Web Forms (Gal & Roitman et al.)

Cupid: Generic Schema Matching (Madhavan et al.)

A Clustering based Approach for Interface Matching (Wu et al.)

WISE: Automatic Integrator for Web Search Interfaces (He et al.)
Automatically Creating Active Ontologies: Overview

Form A
- **Origin**:
- **Destination**:
- **Departure**:
- **Food**: Regular, Vegan, Halal

Form B
- **From**:
- **To**:
- **Departure**:
- **WiFi**: ✗
Automatically Creating Active Ontologies: Grouping Related Form Elements

- Grouping similar form elements
 - Uses linguistic and structural similarities
 - Hierarchical Clustering of similar form elements

- Generation of meta form elements (global objects)
 - Merge form elements
Automatically Creating Active Ontologies: Deriving the Ontology

- One Active Ontology for each meta form (i.e., one per category)
 - Value range unclear → ask developer
 - Select AO node type
Evaluation

- Three evaluation questions
 - How good is the field matching?
 - What is the degree of automation?
 - Are the generated AOs capable to answer user queries?

- Data Source
 - 58 web forms from the UIUC Web Integration Repository
 - Three categories: airfare, automobile, and book search

- Queries
 - 61 queries for the airfare domain
 - 40 subjects (20 of them are native English speaker)
Evaluation: Field Matching

<table>
<thead>
<tr>
<th>Category</th>
<th>Precision</th>
<th>Recall</th>
<th>$F_{0.5}$ Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfare</td>
<td>90.6</td>
<td>21.0</td>
<td>54.4</td>
</tr>
<tr>
<td>Automobile</td>
<td>90.6</td>
<td>37.3</td>
<td>70.5</td>
</tr>
<tr>
<td>Book</td>
<td>98.4</td>
<td>46.4</td>
<td>80.4</td>
</tr>
</tbody>
</table>

- Highest precision for the book search domain
- Recall of clustering must be improved
Evaluation: Degree of Automation

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
<th>Manual</th>
<th>Autom.</th>
<th>Autom. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfare</td>
<td>126</td>
<td>29</td>
<td>97</td>
<td>77%</td>
</tr>
<tr>
<td>Automobile</td>
<td>41</td>
<td>23</td>
<td>18</td>
<td>44%</td>
</tr>
<tr>
<td>Book</td>
<td>49</td>
<td>24</td>
<td>25</td>
<td>51%</td>
</tr>
<tr>
<td>Total</td>
<td>216</td>
<td>76</td>
<td>140</td>
<td>65%</td>
</tr>
</tbody>
</table>

- Automatically generated 77% of the elements needed for the airfare domain
- Needed the help of developers in only 35% of the cases
Evaluation: Query Answering

- How many query elements were correctly identified by the sensor nodes?
 - 61 queries from airfare domain
 - E.g. "Book a flight from Frankfurt to Paris."
 - Post-processing of given values
 - Expected: origin, destination, departure
 - Ask user for missing information

- Results
 - Recall: 75%
 - Queries Completely recognized
 - Only mandatory information: 77.4%
 - Mandatory and optional information: 35.5%
Evaluation: Query Answering (2)

<table>
<thead>
<tr>
<th>Field</th>
<th>Correct</th>
<th>Wrong</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>191</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Destination</td>
<td>185</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Departure</td>
<td>124</td>
<td>24</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>48</td>
<td>52</td>
</tr>
</tbody>
</table>

- How many queries were correctly identified by the sensor nodes?
 - 26 complete queries (out of 61 queries)
 - 10 analyzed
 - 20 web forms (airfare domain)

- Results
 - 7 queries were recognized correctly
 - 2 were not recognized (EASIER asked the user)
 - 1 was recognized incorrectly
Conclusion and Future Work

- EASIER automates the process of building AOs
 - Automatically generates 65% of the AO's sensor nodes
 - High precision in field matching (90.6 - 98.4%)

- Queries
 - Correctly answers 70% of the queries
 - Asks for missing information

- Future Work
 - Improve field matching performance (HTML5, ARIA, …)
 - Integrate complex field mappings
 - Better domain knowledge (Wikipedia, Cyc)
References

References

BACKUP
The EASIER Active Server Architecture

EASIER Active Server

Evaluation Engine

Fact Store

Active Ontologies

Cat. 1

Cat. 2

DM

Broker

Dialog Interface

Communication Interface

Service 1

Service 2

Service n

API Call

Data Flow

Inspired by [Guz08]