CODECATCH
Extracting Source Code Snippets from Online Sources

May 21, 2018

Themistoklis Diamantopoulos
Georgios Karagiannopoulos
Andreas Symeonidis
asymeon@eng.auth.gr

Electrical & Computer Engineering Dept.
Aristotle University of Thessaloniki
1. Introduction

2. CodeCatch

3. System Evaluation
INTRODUCTION
The routine process of writing new code involves using search engines to find **snippets** from websites like StackOverflow, blogs, documentation etc.

This approach is time-consuming, distracting, and implies a lot of personal effort by the developer.

CodeCatch: A system that accelerates the process of searching and separating the solutions for a specific programming task.
RECOMMENDATION SYSTEMS

The routine process of writing new code involves using search engines to find **snippets** from websites like StackOverflow, blogs, documentation etc.

This approach is time-consuming, distracting, and implies a lot of personal effort by the developer.

CodeCatch: A system that accelerates the process of searching and separating the solutions for a specific programming task.
Many similar systems have been proposed in the past:

Prospector, PARSEWeb, MAPO, UP-Miner, PAM, APIMiner, eXoaDocs, DECKARD, Blueprint, ...

Deficits of the aforementioned systems:

- Too much knowledge is required beforehand for the API to be used.
- Most of them do not return ready-to-use snippets.
- Results are presented in form of lists, setting the different implementations difficult to separate.
- They preserve local indexes with limited size and diversity and sometimes outdated.
- Quality and reusability of results usually not evaluated.
- They involve some specialized query language requiring additional effort.
RELATED WORK

Many similar systems have been proposed in the past:
› Prospector, PARSEWeb, MAPO, UP-Miner, PAM, APIMiner, eXoaDocs, DECKARD, Blueprint, ...‹

Deficits of the aforementioned systems:

→ Too much knowledge is required beforehand for the API to be used.
→ Most of them do not return ready-to-use snippets.
→ Results are presented in form of lists, setting the different implementations difficult to separate.
→ They preserve local indexes with limited size and diversity and sometimes outdated.
→ Quality and reusability of results usually not evaluated.
→ They involve some specialized query language requiring additional effort.
CODECATCH
CODECATCH SYSTEM OVERVIEW

Figure: The components of CodeCatch and how they are connected.
Functionality of Downloader

1. Receives as input the query of the developer in natural language (e.g. "How to read a CSV file").
2. Augments the query with Java-related keywords in order to retrieve more relevant results.
3. Issues the query in the search engine and scrapes the returned web pages.
Functionality of Parser

1. Extracts the Abstract Syntax Tree (AST) of each snippet.
2. One pass over AST to extract type declarations and one pass to extract API calls.
3. Drops any snippets not referring to Java source code or not producing API calls.

Note: The parser is robust even when the snippets are not compilable.
Notion behind evaluating reusability...

Assumption: Snippets with API calls commonly used by other developers are more probable to be of reuse.

Reason: Frequently used APIs usually indicate common practice, thus are prone to be reused in different projects.
Functionality of Reusability Evaluator

1. We download locally a set of high-quality projects.
2. We construct a local index where we store their API calls, extracted using the Parser.
3. We calculate the appearance frequency of each API call.
4. We evaluate the reusability of each snippet by averaging the scores of its API calls.
Definition

We define **readability** as the human judgement of how easy a text is to understand.

»Our target is to build a **classifier** using supervised-learning and a dataset of annotated snippets regarding their readability, which will be capable of judging the readability of new unseen snippets.«
Functionality of Readability Evaluator

1. We extract a set of 25 features that are related to readability (e.g. avg identifier length, avg number of comments, etc.)
2. We build a binary classifier using AdaBoost and decision trees. The training was done on a publicly available dataset.
3. We evaluate the readability of new snippets using our trained model with 85% F-Measure score.
Our target is to cluster the retrieved snippets based on their different implementations to the problem.

Assumption...

...snippets which use different API calls represent different implementations of the problem.
Our target is to cluster the retrieved snippets based on their different implementations to the problem.

Assumption...

...snippets which use different API calls represent different implementations of the problem.
String line = "";
BufferedReader br = null;
try {
 br = new BufferedReader(new FileReader("test.csv"));
 while((line = br.readLine()) != null) {
 String[] data = line.split(",");
 }
 br.close();
} catch (Exception e) {
 System.err.println("CSV file cannot be read: " + e);
}

Scanner scanner = null;
try{
 scanner = new Scanner(new File("test.csv"));
 scanner.useDelimiter(",");
 while(scanner.hasNext()) {
 System.out.println(scanner.next() + " ");
 }
 scanner.close();
} catch (Exception e) {
 System.err.println("CSV file cannot be read: " + e);
}

Clustering snippets by examining them as plain text documents is not efficient! About 60% common tokens in both snippets...
1. We represent each snippet as a vector in a **Vector Space Model** (VSM) with respect to its API calls.

2. We use a **tf-idf** vectorizer to extract the vector representation for each document.

3. We calculate the distance between snippets measuring the **cosine similarity**.

4. We perform **silhouette analysis** in order to determine the optimal number of clusters.

5. We employ **K-Means** algorithm for the final clustering, as it is known to be effective in text clustering problems like ours.
EXAMPLE SILHOUETTE ANALYSIS

Figure: Example silhouette analysis for clustering the snippets of query "How to read a CSV file", including (a) the silhouette score for different number of clusters and (b) the silhouette of each of the 5 clusters.
The presenter handles the ranking and the presentation of the results.

Ranking

The snippets within a cluster are ranked according to their API reusability score, and in cases of equal scores according to their distance from the cluster centroid. The overall cluster score emerges from averaging the scores of its containing snippets.
»User inserts in CodeCatch the query "How to read CSV file" and initially gets presented with the clusters formed.«
»User inserts in CodeCatch the query "How to read CSV file" and initially gets presented with the clusters formed.«
User inserts in CodeCatch the query "How to read CSV file" and initially gets presented with the clusters formed.

```java
public class InsertValuesIntoTestDb {

    public static void main(String[] args) throws Exception {
        String splitBy = ",,;",
        BufferedReader br = new BufferedReader(new FileReader("test.csv"));
        while((line = br.readLine()) != null) {
            String[] b = line.split(splitBy);
            System.out.println(b[0]);
        }
        br.close();
    }
}
```
»User inserts in CodeCatch the query "How to read CSV file" and initially gets presented with the clusters formed.«
SYSTEM EVALUATION
EVALUATION FRAMEWORK

The purpose of our evaluation is:

→ To assess whether the snippets of our snippets are relevant.
→ To determine whether the developer can find more easily snippets for all different APIs relevant to a query.

We perform reusability-related evaluation against Google search engine on a dataset of common queries.

<table>
<thead>
<tr>
<th>ID</th>
<th>Query</th>
<th>Clusters</th>
<th>Snippets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How to read CSV file</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>How to generate MD5 hash code</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>How to upload file to FTP</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>How to split string</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>How to play audio file</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>How to send email</td>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>How to connect to a JDBC database</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>How to initialize thread</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>How to read ZIP archive</td>
<td>6</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>How to send packet via UDP</td>
<td>5</td>
<td>34</td>
</tr>
</tbody>
</table>
EVALUATION FRAMEWORK

The purpose of our evaluation is:

→ To assess whether the snippets of our snippets are relevant.
→ To determine whether the developer can find more easily snippets for all different APIs relevant to a query.

We perform reusability-related evaluation against Google search engine on a dataset of common queries.

<table>
<thead>
<tr>
<th>ID</th>
<th>Query</th>
<th>Clusters</th>
<th>Snippets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How to read CSV file</td>
<td>5</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>How to generate MD5 hash code</td>
<td>5</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>How to upload file to FTP</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>How to split string</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>How to play audio file</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>How to send email</td>
<td>5</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>How to connect to a JDBC database</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>How to initialize thread</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>How to read ZIP archive</td>
<td>6</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>How to send packet via UDP</td>
<td>5</td>
<td>34</td>
</tr>
</tbody>
</table>
The annotation procedure was performed without any knowledge on the ranking of snippets in order to maintain an objective outlook.

Snippets were marked as relevant iff their code covers the functionality described by the query.

We consider that the user examines the results subsequently (i.e. as a list of results) for both systems.

For further assessment of each cluster, we annotate the results to consider them relevant for each implementation.

We use reciprocal rank as a metric for comparison.
EVALUATION FRAMEWORK

→ The annotation procedure was performed without any knowledge on the ranking of snippets in order to maintain an objective outlook.

→ Snippets were marked as **relevant** iff their code covers the functionality described by the query.

→ We consider that the user examines the results subsequently (i.e. as a list of results) for both systems.

→ For further assessment of each cluster, we annotate the results to consider them relevant for each implementation.

→ We use **reciprocal rank** as a metric for comparison.
EVALUATION FRAMEWORK

→ The annotation procedure was performed without any knowledge on the ranking of snippets in order to maintain an objective outlook.

→ Snippets were marked as relevant iff their code covers the functionality described by the query.

→ We consider that the user examines the results subsequently (i.e. as a list of results) for both systems.

→ For further assessment of each cluster, we annotate the results to consider them relevant for each implementation.

→ We use reciprocal rank as a metric for comparison.
EVALUATION FRAMEWORK

→ The annotation procedure was performed without any knowledge on the ranking of snippets in order to maintain an objective outlook.
→ Snippets were marked as **relevant** iff their code covers the functionality described by the query.
→ We consider that the user examines the results subsequently (i.e. as a list of results) for both systems.
→ For further assessment of each cluster, we annotate the results to consider them relevant for each implementation.
→ We use **reciprocal rank** as a metric for comparison.
The annotation procedure was performed without any knowledge on the ranking of snippets in order to maintain an objective outlook.

Snippets were marked as relevant iff their code covers the functionality described by the query.

We consider that the user examines the results subsequently (i.e. as a list of results) for both systems.

For further assessment of each cluster, we annotate the results to consider them relevant for each implementation.

We use reciprocal rank as a metric for comparison.
Figure: Reciprocal Rank of CodeCatch and Google for the three most popular implementations (I1, I2, I3) of each query.

»Reciprocal Rank (RR) is computed as the inverse of the rank of the first relevant result \((RR = \frac{1}{rank})\).«
→ In terms of the **relevance** of the results both systems are very effective.

→ In some cases (e.g. Q1 - "How to read CSV file") developers can find relevant snippets for different implementations using CodeCatch **quicker**.

→ CodeCatch places the **most popular** implementation at the top of the list more often than Google (e.g. queries 2, 3, 6, 7, 10).
- In terms of the **relevance** of the results both systems are very effective.
- In some cases (e.g. Q1 - "How to read CSV file") developers can find relevant snippets for different implementations using CodeCatch **quicker**.
- CodeCatch places the **most popular** implementation at the top of the list more often than Google (e.g. queries 2, 3, 6, 7, 10).
→ In terms of the **relevance** of the results both systems are very effective.

→ In some cases (e.g. Q1 - "How to read CSV file") developers can find relevant snippets for different implementations using CodeCatch **quicker**.

→ CodeCatch places the **most popular** implementation at the top of the list more often than Google (e.g. queries 2, 3, 6, 7, 10).
CONCLUSIONS - FUTURE WORK

Conclusion from our work:

→ Software engineers can save valuable time using recommendation systems.
→ Assessing the readability and reusability can improves the quality of results.
→ Grouping results into clusters provides a comprehensive view of the different implementations.

Future work could be directed into:

→ Improving the ranking scheme to include further information (e.g. developer’s preference)
→ Performing snippet summarization using information from the clustering.
→ Conducting a developer study in order to further assess CodeCatch for its effectiveness.
CONCLUSIONS - FUTURE WORK

Conclusion from our work:

→ Software engineers can save valuable time using recommendation systems.
→ Assessing the readability and reusability can improve the quality of results.
→ Grouping results into clusters provides a comprehensive view of the different implementations.

Future work could be directed into:

→ Improving the ranking scheme to include further information (e.g. developer’s preference)
→ Performing snippet summarization using information from the clustering.
→ Conducting a developer study in order to further assess CodeCatch for its effectiveness.
CodeCatch web application is available at:
http://codecatch.ee.auth.gr

We thank you for your attention!
Questions?