Case-Based Reasoning vs Parametric Models for Software Quality Optimization

Adam Brady
Lane Department of CS&EE
West Virginia University, USA
adam.m.brady@gmail.com

Tim Menzies
Lane Department of CS&EE
West Virginia University, USA,
tim@menzies.us

ABSTRACT
Background: There are many data mining methods but few comparisons between them. For example, there are at least two ways to build quality optimizers, programs that find project options that change quality measures like defects, development effort (total staff hours), and time (elapsed calendar months). In the first way, we construct a parametric model to represent prior software projects. In the second way, we just apply case-based reasoning to reason directly from historical cases.

Aim: To assess case-based reasoning vs parametric modeling for quality optimization.

Method: We compared the W case-based reasoner against the SEEAW parametric modeling tool.

Results: W is easy to explain and fast to build. It makes no parametric assumptions and hence can be rapidly applied to project data in many formats. SEEAW is an elaborate tool that can only process project data expressed in a particular ontology (i.e. just the COCOMO attributes). It is also slower to execute than W. In 24 different tests comparing W and SEEAW, W always performs at least as well as SEEAW. In 6 of those tests W performed statistically better (all tests used Mann-Whitney, 95% confidence). Lastly, like any CBR method, it comes with a built-in maintenance strategy (just add more cases).

Conclusion: The W case-based reasoning tool is recommended over the SEEAW parametric modeling tool for purposes of quality optimization (except in the case where there is no local data).

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software quality assurance; D.2.9 [Software Engineering]: Management—Time Estimation; I.2.6 [Artificial Intelligence]: Learning—Analogies

Keywords
Effort Estimation, Analogy, Optimization, Parametric modeling, Software Quality, COCOMO, Case Based Reasoning

1. INTRODUCTION

How should we reason about software projects? Should we extrapolate from old data to build a parametric model; e.g. using a Bayes net [9], or the linear equations of COCOMO [5,7]? Or is it best to reason directly from data, without an intervening parametric model, using case-based reasoning (CBR) [26]?

This is a difficult question to answer, unless we restrict ourselves to a particular context. In this paper, we adopt the context of software quality optimization; i.e. adjusting a software project such that we improve quality attributes such as the defects (number of delivered defects), the months (calendar time to delivery) and the effort (staff time, in person months, required for that delivery). This quality optimization task is different from effort estimation. Effort estimators just predict measures on the current project while quality optimizers seek changes that most improve a project.

Quality optimization is a non-linear problem. Improving any one goal can harm the others. For example:

- If management rushes projects to completion, they decrease months but can increase defects.
- Projects that adopt elaborate quality assurance procedures can reduce defects but at the cost of increased effort.

A quality optimizer must therefore trade-off between reducing months and defects and effort. This paper will compare two quality optimizers:

1. SEEAW is an AI algorithm that explores parametric models of software development, based on COCOMO.
2. W is a case-based reasoning algorithm that does the same task as SEEAW, without using a parametric model.

SEEAW was first introduced in [18] and has been applied to numerous domains [10,16,17,20–22]. W was first introduced in [8] but that report includes no comparisons with other quality optimizers. This paper compares W’s case-based reasoning against SEEAW’s parametric models. Compared to SEEAW:

- W finds similar or better optimizations.
- W is simpler to code: 200 lines of AWK as opposed to the 5000 lines of LISP code used in SEEAW.
- W is faster to run: the following experiments took minutes for W, but hours for SEEAW.
- W is simpler to maintain since, in CBR, “maintenance” means nothing more than “add more cases”.
- W makes no use of an underlying model and is therefore free of all the assumptions of parametric modeling. Hence it can be quickly applied to more data sets. For example, SEEAW requires data to be in the COCOMO format but W has been applied to numerous data sets in other formats [8].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. PROMISE2010, Sep 12-13, 2010, Timisoara, Romania Copyright 2010 ACM ISBN 978-1-4503-0404-7...$10.00.
We conclude from these results that, for the task of quality optimization, 'W's case-based reasoning methodology is recommended over SEESAW's parametric modeling. The one exception to this would be that if there is no local data, then 'W cannot function and SEESAW should be used. While we offer no conclusion on the general merits of case-based reasoning compared to parametric modeling, these results should encourage further experimentation on the matter.

2. BACKGROUND
The debate between case-based reasoning and model-based methods can be conducted on at least two levels:

1. At one level, it is an engineering-based discussion that assesses these approaches on criteria like ease of implementation, runtime speed, and the observed output performance.

2. At another level of assessment, we can assess case-based vs model-based in terms of their cognitive implications.

Since most of this paper is about level (1), the rest of this section discusses level (2).

Platonic model-based reasoning is meant to seek out universal truths. For example, Newton’s agenda was to find a set of equations (e.g. \(F = ma \)) that can be applied universally on earth, as well as to well as distant planets and stars. He succeeded. In 1846, rival astronomers John Adams (in England) and Urbain Leverrier (in France) raced to find a previously unseen planet that was disturbing the orbit of Uranus. Neptune was first sighted by Adams, then Leverrier, after both men pointed their telescopes at the precise point in the sky indicated by Newton’s equations.

We dream of the day that our SE models will achieve the same universality of Newton’s equations. To date, we have not been successful. Researchers like Boehm developed parametric models that predict development effort for software. In Boehm’s COCOMO parametric model (the 1981 version [5]):

\[
Effort = a \times Loc^b \times \prod_i \beta_i x_i
\]

where \(x_i \) are one of the effort multipliers shown in Figure 1 (at top) and \(\beta_i \) is a coefficient that controls the influence of \(x_i \).

Such learning combines expert intuition with automatic reasoning. Expert intuitions define the general form of the parametric model, while automated data mining fills in the details of that model.

For example, the goal of data mining over parametric models is to take local data and learn appropriate values for the tunable attributes. In the above model, those tunable attributes are \((a, b, \beta_i)\).

Based on linear regression over historical data [5,7], Boehm offers values to \((a, b, \beta_i)\) to three significant figures. Previously [15], we have reported that such precision is somewhat optimistic since \(\beta_i\) has a very large variance. The plot at the bottom of Figure 1 shows the \(\beta_i\) values learned from twenty 66% samples (selected at random) of the NASA93 data set from the PROMISE repository. While some of the coefficients are stable (e.g. the white circles of \(loc\) remains stable around 1.1), the coefficients of other attributes are highly unstable:

- The \((\max - \min)\) range of some of the coefficients is very large; e.g. the upside down black triangles of \(stor\) ranges from \(-2 \leq \beta_i \leq 8\).
- Consequently, nine of the coefficients in Figure 1 jump from negative to positive.

We have seen instability in other datasets, including the COCS1 data used by Boehm to derive Equation 1 [15]. This is an troubling observation. It seems that while Newton’s equations let us precisely locate Neptune, Boehm’s equations cannot point us exactly at which project attributes will lead to lower effort.

Parametric modeling assumes that (i) one parametric form (e.g. Equation 1) is universal across multiple domains and (ii) that form is tuned to the local situation by adjusting some tuning attributes. An opposite approach to parametric models is case-based reasoning (CBR). In CBR, there are no universally-applicable parametric

![Figure 1: COCOMO 1 effort multipliers, and the sorted coefficients found by linear regression from twenty 66% sub-samples (selected at random) from the NASA93 PROMISE data set; from [15]. Prior to learning, training data was linearized in the manner recommended by Boehm (\(x\) was changed to \(\log(x)\); for details, see [15]). During learning, a greedy back-select removed attributes with no impact on the estimates: hence, some of the attributes have less than 20 results. After learning, the coefficients were unlinearized.](image-url)
CBR inference is usually characterized [1] in four steps:

1. **Retrieve**: Find the most similar cases to the target problem.
2. **Reuse**: Adapt our actions conducted for the past cases to solve the new problem.
3. **Revise**: Revise the proposed solution for the new problem and verify it against the case base.
4. **Retain**: Retain the parts of current experience in the case base for future problem solving.

In terms of cognitive theory, CBR challenges notions of reasoning as model-building. The mantra of CBR is “don’t think, remember”. That is, when faced with some new situation:

- Do not reason it out using some underlying model (e.g. Newton’s equations or Boehm’s parametric models).
- Rather, respond to a new situation via an on-demand survey of past experiences [23].

CBR challenges the premise of the PROMISE conference series. Currently, this conference bills itself as “Predictive Models in Software Engineering”. This title assumes that model building is the best way to analyze software engineering. However, if model-heavy methods like COCOMO do worse than model-lite CBR methods, then we would need to rethink the premise of PROMISE.

(Notice that we call CBR model-lite, but not model-free. For more on this distinction, see the Discussion section, below.)

3. Quality Optimization

The above discussion motivates a comparison between parametric model-based methods and CBR. To make that comparison, we need to explore the same task with two different approaches. Accordingly, this section describes quality optimization using SEESAW’s parametric models or W’s case-based reasoning.

One thing that may not be apparent from the following discussion is the relative complexity of the two systems. Based on recent experience with teaching graduate AI, we assert that building and assessing SEESAW is a term project while W could be implemented in two weekly homework assignments (week1 implements some basic data loading and nearest neighbor measures; week2 extends that code to complete W).

3.1 SEESAW

Since 2007, we have applied AI algorithms over parametric models of software development (based on COCOMO) [18] to implement quality optimizers. We found this to be a challenging task since it must execute over partial descriptions of projects and, in the case of parametric models, over models with uncertain internal parameters (like the ranges shown in Figure 1).

In order to address this challenge, we need to understand the nature of those models. In parametric modeling, the predictions of a model about a software engineering project are altered by project variables \(P \) and tunable attribute coefficients \(T \):

\[
\text{prediction} = \text{model}(P, T) \tag{2}
\]

In the simplified COCOMO model of Equation 3, the tuning options \(T \) are the range of \((a, b) \) and the project options \(P \) are the range of \(p\text{mat} \) (process maturity) and \(\text{acap} \) (analyst capability).

\[
\text{effort} = a \cdot \text{LOC}^{b+p\text{mat}} \cdot \text{acap} \tag{3}
\]

Based on the definitions of the COCOMO model we can say that the ranges of the project attributes are \(P = 1 \leq (p\text{mat}, \text{acap}) \leq 5 \). Further, given the cone of uncertainty associated with a particular project \(p \), we can identify the subset of the project options \(p \subseteq P \) relevant to a particular project. For example, a project manager may be unsure of the exact skill level of team members. However, if she were to assert “my analysts are better than most”, then \(p \) would include \(\{\text{acap} = 4, \text{acap} = 5\} \).

SEESAW seeks a treatment \(r_s \subseteq p \) that maximizes the value of a model’s predictions where value is a domain-specific function that scores model outputs according to user goals:

\[
\arg\max_r \left(\text{AI search} \sum_{r_s \subseteq p} T, \text{value}(\text{model}(r_s, t)) \right) \tag{4}
\]

The intuition of Equation 4 was that, when faced with tuning variance like that seen in Figure 1, we should search for conclusions...
that are stable across the space of possible tunings. SEESA W assumed that the dominant influences on the prediction are the project options \(p \) (and not the tuning options \(T \)). Under this assumption, the predictions can be controlled by:

- Constraining \(p \) (using some AI tool)
- Leaving \(T \) unconstrained (and sampling \(t \in T \) using Monte Carlo methods)

The parametric models used by SEESA W’s models come from COCOMO. These attributes have a range taken from \{very low, low, nominal, high, very high, extremely high\} or

\[
\{vl=1, l=2, n=3, h=4, vh=5, xh=6\}
\]

In COCOMO-II model [7], Boehm divided the attributes into two sets: the effort multipliers and the scale factors. The effort multipliers affect effort/cost in a linear manner. Their off-nominal ranges \{vl=1, l=2, h=4, vh=5, xh=6\} change the prediction by some ratio. The nominal range \{n=3\}, however, corresponds to an effort/cost multiplier of 1, causing no change to the prediction. Hence, these ranges can be modeled as straight lines \(y = mx + b \) passing through the point \((x, y)=(3, 1)\). Such a line has a y-intercept of \(b = 1 - 3m \). Substituting this value of \(b \) into \(y = mx + b \) yields:

\[
\forall x \in \{1, 6\} \quad EM_i = m_\alpha (x - 3) + 1 \quad (5)
\]

where \(m_\alpha \) is the effect of \(\alpha \) on effort/cost.

We can also derive a general equation for the scale factors that influence cost/effort in an exponential manner. These features do not “hinge” around \((3,1) \) but take the following form:

\[
\forall x \in \{1, 6\} \quad SF_i = m_\beta (x - 6) \quad (6)
\]

where \(m_\beta \) is the effect of factor \(\beta \) on effort/cost.

Along with COCOMO-II, Boehm also defined the COQUALMO defect predictor. COQUALMO contains equations of the same syntactic form as Equation 5 and Equation 6, but with different coefficients. Using experience from 161 projects [7], we can find the maximum and minimum values ever assigned to \(m \) for COQUALMO and COCOMO. Hence, to explore tuning variance (the \(t \in T \) term in Equation 4), all we need to do is select \(m \) values at random from the min/max \(m \) values ever seen. An appendix to this document lists those ranges.

Initially, we implemented the AI search of Equation 4 using simulated annealing [17, 18, 21]. Subsequent work demonstrated that the recommendations found in this way did better than numerous standard process improvement methods [20]. Later implementations were based on a state-of-the-art theorem prover [10]. SEESA W searches within the ranges of project attributes to find constraints that most reduce development effort, development time (measured in calendar months), and defects. Figure 3 shows SEEAW’s pseudo-code. The code is an adaption of Kautz & Selman’s MaxWalkSat local search procedure [13]. The main changes are that each solution is scored via a Monte Carlo procedure (see score in Figure 3) and that SEESA W seeks to minimize that score (since, for our models it is some combination of defects, development effort, and development time in months).

SEESA W first combines the ranges for all project attributes. These constraints range from Low to High values. If a project does not mention a feature, then there are no constraints on that feature, and the combine function (line 4) returns the entire range of that feature. Otherwise, combine returns only those features with a range of Options where Low < High (line 5). In each iteration of the algorithm, it is possible that one acceptable value for a feature \(X \) will be discovered. If so, the range for \(X \) is reduced to that single value, and the feature is not examined again (line 17). SEESA W prunes the final recommendations (line 21). This function pops off the \(N \) selections added last that do not significantly change the final score (\(t \)-tests, 95% confidence). This culls any final irrelevancies in the selections. The score function shown at the bottom of Figure 6 calls COCOMO/COQUALMO models 100 times, each time selecting random values for each feature Options. The median value of these 100 simulations is the score for the current project settings. As SEESA W executes, the ranges in Options are removed and replaced by single values (lines 16-17), thus constraining the space of possible simulations.

While a successful prototype, SEESA W has certain drawbacks:

- **Model dependency**: SEESA W requires a model to generate the estimates. Hence, the conclusions reached were only as good as this model so using this tool requires an initial, possibly time-consuming, model validation process.
- **Data Dependency**: SEESA W can only process project data in a format compatible with the underlying model. In practice, this limits the scope of the tool.
- **Arbitrary Design**: SEESA W handles two dozen cases using ad hoc rules makes it harder to verify that the tool is correct.
- **Performance**: SEESA W uses tens of thousands of iterations, with several effort estimates needed calculated for each iteration. This resulted in a performance disadvantage.
- **Size and Maintainability**: Due to all the above factors, the SEESA W code base has proved difficult to maintain.

We have found that these factors limit the widespread use of quality optimizers:

- In the three years since our first paper [18], we have only

```python
1 function run(AllRanges, ProjectConstraints) {
  2 OutScore = -1
  3 P = 0.95
  4 Out = combine(AllRanges, ProjectConstraints)
  5 Options = all_out_features with ranges low < high
  6 while Options {
    7 X = any member of Options, picked at random
    8 (Low, High) = low, high ranges of X
    9 LowScore = score(X, Low)
    10 HighScore = score(X, High)
    11 if LowScore < HighScore
    12 then Maybe = Low; MaybeScore = LowScore
    13 else Maybe = High; MaybeScore = HighScore
    14 fi
    15 if MaybeScore < OutScore or P < rand()
    16 then delete all ranges of X except Maybe from Out
    17 delete X from Options
    18 OutScore = MaybeScore
    19 fi
    20 }
  21 return backSelect(Out)
  22 }

23 function score(X, Value) {
  24 Temp = copy(Out); if don't mess up the Out global
  25 from Temp, remove all ranges of X except Value
  26 run Monte Carlo on Temp for 100 simulations
  27 return median score from Monte Carlo simulations
  28 }

Figure 3: Pseudocode for SEESA W
```
coded one software process model (COCOMO), which inherently limits the scope of our investigations.

- No other research group has applied these techniques.

These problems motivated an exploration of alternate approaches to quality optimization.

3.2 W

The standard procedure for CBR is to report the median class value of some local neighborhood. This neighborhood is typically defined as the Euclidean distance from a defined project in n-dimensional space with n project features [26]. W works similarly, but defines a project as a range of values:

- From a range of project values, cases are retrieved that match a specific amount of overlap with the defined project ranges. A case’s overlap is defined as the percentage of attributes that fall within the specified ranges of the defined project.
- From these selected similar cases, the cases are sorted by a measure of utility to determine the better examples.
- From these sorted ranges, a contrast set is learned. The top 5 “best” cases (those with the best utility measure) are placed into a set labeled “best”. The next 15 ranked cases are placed into a set labeled “rest”, for a combined total of 20 cases.
- From the contrast set, W selects the features that best select for the region with the best utility measurements.

In the above, better is determined by some domain-specific predicate. In the case of effort, defect, and month estimations, this utility is the normalized euclidean distance from the lowest possible cost for all three factors.

3.2.1 Contrast Sets

Once a contrast set learner is available, it is a simple matter to add W to CBR. W finds contrast sets using a greedy search, where candidate contrast sets are ranked by the frequency of which they appear in the “best” set squared divided by how often the candidate appears in both the “best” and “rest” sets. A simple strategy to score more favorably towards attributes that occur most often in the best case is to square the number of times. Taking this heuristic one step further, given an attribute x, we can penalize x’s occurrence in the “rest” by dividing the sum of the frequency counts in best and rest [16], the ensuring rare attributes are weighted appropriately:

$$likex = \frac{freq(x|best)^2}{freq(x|best) + freq(x|rest)} \tag{7}$$

From this measure we need only sort each attribute by it’s like score to prioritize our recommendations

3.2.2 The W Algorithm

CBR systems input a query q and a set of cases. They return the subset of cases C_i that is relevant to the query. In the case of W:

- Each case C_i is a historical record of one software project, plus the development effort required for that project. Within the case, the project is described by a set of attributes which we assume have been discretized into a small number of discrete values (e.g. analyst capability $\in \{1, 2, 3, 4, 5\}$ denoting very low, low, nominal, high, very high respectively).
- Each query q is a set of constraints describing the particulars of a project. For example, if we are interested in a schedule over-run for a complex, highly reliable project that has only minimal access to tools, then those constraints can be expressed in the syntax of Figure 4.

Figure 4: W’s syntax for describing the input query q. Here, all the values run 1 to 6. $4 \leq cplx \leq 6$ denotes projects with above average complexity. Question marks denote what can be controlled—this case, rely, time (required reliability and development time)

1. Set $i = 0$ and $q'_i = q$
2. Let $Found_i$ be the test cases consistent with q'_i (i.e. that do not contradict any of the attribute ranges in q'_i)
3. Let $Effort_i$ be the median efforts seen in $Found_i$
4. If $Found_i$ is too small then terminate (due to over-fitting). After Shepard [26], we terminated for $|Found_i| < 3$.
5. If $i > 1$ and $Effort_i < Effort_{i-1}$, then terminate (due to no improvement).
6. Print q'_i and $Effort_i$.
7. Set $i = i + 1$ and $q'_i = q_{i-1} \cup S_i$
8. Go to step 2.

Figure 5: Revising q to learn q'. W seeks q' (a change to the original query) that finds another set of cases C' such that the median effort values in C' are less than that of C (the cases found by q). W finds q' by first dividing the data into two-thirds training and one-third testing. Retrieve and reuse are applied to the training set, then revising is applied to the test set.

In the retrieve step, the initial query q is used to find the N training cases nearest to q using a Euclidean distance measure where all attribute values are normalized from 0 to 1.

In the reuse (or adapt) step, the N cases are sorted by effort and divided into the K_1 best cases (with lowest efforts) and K_2 rest cases. For this study, we used $K_1 = 5, K_2 = 15$. Then we seek the contrast sets that select for the K_1 best cases with the better estimates. All the attribute ranges that the user has marked as “controllable” are scored and sorted by Equation 7. This sorted order S defines a set of candidate q' queries that use the first i-th entries in S:

$$q'_i = q \cup S_1 \cup S_2 \cup ... \cup S_i$$

According to Figure 2, after retrieving and revising comes revising (this is the “verify” step). When revising q', W applies irrelevant ranges using the algorithm of Figure 5.

On termination, W recommends changing a project according to the set $q' = q$. For example, in Figure 4, if $q' = q$ is rely $= 3$ then this treatment recommends that the best way to reduce the effort for this project is to reject rely $= 4$ or 5.

Formally, the goal of W is find the smallest i value such that q'_i selects cases with the more of the better estimates. The reader might protest that the generation of some succinct human-readable construct like q'_i means that W is not a “real” case-based reasoner. In that view, the distinguishing feature of CBR is that its reasoning is instance-based and it never generates any generalizations.

In reply, we observe that W is not the only system that extends standard CBR with some generalization tools. Watson [27] reviews numerous CBR systems that, for example, run decision tree learners over their case library in order to automatically generate an index to the cases. Also, once a system can read a case library, com-
compute distance calculations, and generate a sorted list of the nearest neighbors, implementing Figure 5 and Equation 7 is only a few dozen lines of code. That is, \(\mathcal{W} \) is such a small extension to standard CBR that it would be somewhat pedantic to declare that it is not “real” CBR.

4. COMPARING \(\mathcal{W} \) TO SEESA W

In order to compare \(\mathcal{W} \) and SEESA W, both systems require similar inputs. SEESA W can only handle models in the COCOMO format. Hence, we restrict ourselves to data in that format (see [8]) for examples of \(\mathcal{W} \) running on a much broader set of inputs.

The inputs required for this study are:

- \(\mathcal{W} \) needs a set of historical cases. We used the NASA93 dataset available from http://promisedata.org/data. This dataset represents 93 different NASA projects collected from the 1980's and 1990's represented as feature vectors describing each project in COCOMO format. NASA93 data only contains historical information for project effort. Development time (measured in calendar months) and defects were added in using the COCOMO/COQUALMO models.
- Both SEESA W and \(\mathcal{W} \) need an objective function that guides their search. In this study, the objective function rewarded minimization of the sum of defects and effort and months (after these values had been normalized to the same range).
- Both SEESA W and \(\mathcal{W} \) need a set of project constraints that tune their conclusions to particular projects. We used the project constraints of Figure 6.

Figure 6 comes from our debriefing of NASA program managers and shows different kinds of NASA mission:

- Ground and flight represent typical ranges for most NASA projects at the Jet Propulsion Laboratory (JPL);
- OSP represents the guidance, navigation, and control aspects of NASA's 1990 Orbital Space Plane;
- OSP2 represents a second, later version of OSP with a more limited scope of COCOMO attributes.

The values column in that figure shows settings that cannot be changed; e.g. for OSP, the required reliability is fixed at rely = 5. On the other hand, the low and high ranges in that figure define the space of possible recommendations for that project. For instance, the reliability of the JPL flight software can vary from a ranking of 3 (nominal) to 5 (very high).

\(\mathcal{W} \) used Figure 6 to set its initial query \(q_0 \). SEESA W used Figure 6 to guide a set of simulations around its parametric models. For each case study, 1000 times, inputs were selected at random, constrained by Figure 6 (so the inputs for case study \(X \) conformed to the description of \(X \) shown in that figure).

In order to offer a fair comparison between SEESA W and \(\mathcal{W} \), we proceeded as follows. Recall that \(\mathcal{W} \) has a training component that implements retrieve, reuse, and revise (described above Figure 5). A test component was implemented that copied the code used for retrieve. This test component was modified such that it executed on a different test set that contained no data used in training.

Given that rig, for each case study in Figure 6, we repeated the following process 50 times.

- The available data (NASA93) was divided into a train and test sets (of sizes 66%:33%). The division was random so that each time, different instances appeared in train and test.
- The median and spread values for effort, months, and defects were collected from the train set. These medians and spreads were recorded as the before values.

<table>
<thead>
<tr>
<th>project</th>
<th>feature</th>
<th>low</th>
<th>high</th>
<th>feature</th>
<th>setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP: Orbital Space plane</td>
<td>prec</td>
<td>3</td>
<td>5</td>
<td>data</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>flex</td>
<td>2</td>
<td>5</td>
<td>pvol</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>resl</td>
<td>1</td>
<td>3</td>
<td>rely</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>team</td>
<td>2</td>
<td>3</td>
<td>resl</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>pmat</td>
<td>1</td>
<td>4</td>
<td>pcap</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>stor</td>
<td>3</td>
<td>5</td>
<td>plex</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>rele</td>
<td>2</td>
<td>4</td>
<td>site</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>docu</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acap</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>apcx</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lex</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPL flight software</td>
<td>tool</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sced</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cplx</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KSLOC</td>
<td>75</td>
<td>125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>project</th>
<th>feature</th>
<th>low</th>
<th>high</th>
<th>feature</th>
<th>setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP2</td>
<td>prec</td>
<td>3</td>
<td>5</td>
<td>flex</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>pmat</td>
<td>4</td>
<td>5</td>
<td>team</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>docu</td>
<td>3</td>
<td>4</td>
<td>time</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>lex</td>
<td>2</td>
<td>5</td>
<td>stor</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>seed</td>
<td>2</td>
<td>4</td>
<td>data</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>acap</td>
<td>5</td>
<td>6</td>
<td>pvol</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>apcx</td>
<td>2</td>
<td>5</td>
<td>rely</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>lex</td>
<td>1</td>
<td>4</td>
<td>pcap</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>plex</td>
<td>4</td>
<td>5</td>
<td>pcon</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>acap</td>
<td>3</td>
<td>4</td>
<td>apex</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>rely</td>
<td>4</td>
<td>5</td>
<td>pvol</td>
<td>4</td>
</tr>
<tr>
<td>JPL ground software</td>
<td>tool</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cplx</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>acap</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rely</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pmat</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KSLOC</td>
<td>11</td>
<td>392</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: The four NASA case studies. Numeric values {1, 2, 3, 4, 5, 6} map to {very low, low, nominal, high, very high, extra high}.
After 14.2
2812
a
b
6.8
100
291
((b-a)/a)
5%
1784
16.0
SEESA W
3180
5979
((b-a)/a)
6292
21%
42%
71%
b
10.5
((b-a)/a)
7.2
16.2
6527
12%
16.7
7797
2035
258
3457
13.5
SEESA W
2666
14%
7.0
9%
9%
81%
270
3138
42%
10.3
9.4
16.0
SEESA W
63%
19%
3180
-119%
114
13.7
184
3017
62%
15%
72%
22%
32%
2812
33%
7.3
Change

Figure 7: Average results in 50 runs. “Before” reports values from the training data. “After” reports values after applying SEESA or \(\psi \). “Median” is the 50th percentile. “Spread” is the (75 - 25)th percentile. The last column in each group (labelled “Change”) shows the relative change in effort, defect, months found by \(\psi \) or SEESA. A negative amount in this column denotes an optimization failure (increased defect, effort, months). Rows highlighted in grey indicate when one half of a comparison has a statistically significantly different, and better, result than the other.

- Each quality optimizer (\(\psi \) and SEESA) was run separately. The \(\psi \) algorithm used the train set while SEESA used its internal models. In either case, the quality optimizer returned a set of recommendations on how to change the project in order to reduce effort, defects, and development time (measured in calendar months).
- These recommendations were assessed in the same way: by passing them to \(\psi \)’s test component which retrieved relevant cases from the test set.
- The median and spread values for effort, months, and defects were collected from the instances retrieved from the test set. These were recorded as the after values.

The results were reported in terms of median and spread. We say that the median of a set of numbers are the 50th-percentile value while the spread is difference between the 75th and 25th percentile value. The median is a measure of central tendency while the spread is a measure of uncertainty around the median. Decreasing the spread means that the predictions fall within a narrower range. We report spread rather than other measures like standard deviation since we wish to avoid any inappropriate assumptions of symmetrical distributions.

5. RESULTS

Average median and spread results over the 50 trials are shown in Figure 7. The last column in each group (labelled “Change”) shows the relative change in effort, defect, months found by \(\psi \) or SEESA. A negative amount in this column denotes an optimization failure (increased defect, effort, months). Note that such negative results occur only in a small minority of results.

The gray rows indicate any member of a pair that was both statistically significantly different and had a lower 50th percentile value. Note that for most pairs, the results are not statistically significantly different (Mann-Whitney, 95% confidence level).

Before commenting on SEESA vs \(\psi \), we first note that our results should encourage more use of quality optimization. Observe that, in the majority of cases, quality optimization works regardless of how it is implemented (e.g. CBR vs parametric models). In the 52 experiments of Figure 7, positive quality improvements were seen for 49/52 = 94% experiments (the 3 exceptions are in the defect results of Flight and OSP2).

Another result that should encourage more use of quality optimizers is the reduction in the spreads. In all experiments the amount of uncertainty in the median estimates was reduced. As shown in Figure 8, the reduction in the spread was usually over 61%. This is a major advantage of quality optimizers since uncertainty is an serious issue that plagues the managers of software engineering projects.

The spread reductions were larger than the median reductions. As shown in Figure 8, the expected median reduction in any quali-
ity estimate was only 15%. Note that if this were otherwise, then that would be a somewhat damning critique of current software engineering practices. To see this, consider the implications of quality optimizers finding recommendations that resulted in an order of magnitude reduction in effort and defects and development time. That would suggest that the managers of software engineering projects are routinely missing changes that would significantly improve their projects.

Another feature to note is that, with only a few exceptions, the median optimizations obtained from case-based reasoning or parametric modeling are very similar. For example, in median MONTHS results (top right of Figure 7), within each pair of treatments, the change in the median months values is very similar:

- 19 vs 18% change (for Ground)
- 14 vs 9% change (for Flight)
- 11 vs 12% change (for OSP)
- 12 vs 14% change (for OSP2)

That is, projects can contain an inherent set of constraints that cannot be changed, even by smart algorithms. Certainly, we can fine tune the structure of a project to obtain some improvements in effort, defects, and months but managers should not expect a magic silver bullet that offers orders of magnitude improvement in their software process.

Turning now to the main point of this paper, we conducted statistical tests on each pair of \(W \)'s vs SEESA W improvements in median/spread/for each query. A Mann Whitney U test (95% confidence) was performed on the two sets of reduction distributions from each comparison. The statistical tests are summarized in Figure 9. Note that, in the majority case \((\frac{15}{27} \), \(W \)'s case-based reasoning performs as well as \(SEESA W \)'s parametric modeling.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Wins</th>
<th>Losses</th>
<th>Ties</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>6</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>SEESA W</td>
<td>0</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

Figure 9: Win/Loss/Tie table for statistically significant reductions across all goals with the Nasa Flight, Ground, OSP, and OSP2 projects.

Also, when the performance results were different, case-based reasoning did better than parametric modeling \((\frac{15}{27} \)- sometimes spectacularly so. Observe the median DEFECT OSP2 results (last line, top row, middle of Figure 7): SEESA W's recommendations resulted in a dramatic increase in the number of delivered defects \((2612 \text{ to } 7797)\). This result shows that \(W \)'s modest decrease in defects (13%) is actually far better than those found by the other approach.

In summary, the simple case-based reasoning of \(W \) performs just as well, or better, than SEESA W's elaborate parametric modeling.

6. DISCUSSION

6.1 Search-based Software Engineering

Previously \[10\], we have explored the connection of SEESA W to search-based SE (SBSE) \[11\]. In summary, SBSE uses optimization techniques from operations research and meta-heuristic search (e.g., simulated annealing and genetic algorithms) to hunt for near-optimal solutions to complex and over-constrained software engineering problems. SBSE has been applied to many problems in software engineering (e.g., requirements engineering \[12\]) but most often in the field of software testing \[2\]. Harman's writing inspired us to try simulated annealing (SA) to search the what-ifs in untuned COCOMO models \[18\]. For quality optimization, however, we found that search methods taken from the constraint satisfaction literature out-perform SA \[10\].

6.2 Model-lite

We said above that CBR was model-lite, but not model-free. We hesitate to call CBR model-free, lest we incur the wrath of Janet Kolodner or Roger Shank \[24\]. Kolodner and Shank regard CBR as a model of human cognition where knowledge in a context-dependent manner, according to the task at hand. This construct may differ from context to context but the search mechanisms by which the construct is built (CBR) is constant.

To expand on that point, we note that “model” has at least two definitions:

1. A hypothetical description of a complex entity or process.
2. A plan to create, according to a model or models.

The first definition is closest to Shepperd’s definition of “model-based systems”. According to Shepperd \[25\] software effort estimation methods separate into “human-centric” techniques and “model-based” techniques. In the former, humans produce their recommendations without using some externalizable representation. In the latter, a variety of techniques may be used which, according to Shepperd, divide into algorithmic/parametric models (like COCOMO) and induced prediction systems (which include regression, rule induction, CBR, and many others).

We can marry Shepperd’s view with that of Kolodner and Shank by specializing the definition of model-based systems. Extending Shepperd’s ontology, we say that model-based systems can be sorted according to how much modeling they assume prior to induction. At one end of that sort order, we have parametric models like COCOMO. We call these model-heavy since they conform to the first definition of “model”, shown above. At the other end of that sort are the model-lite methods like CBR. These model-lite methods conform to the second definition of “model”. Note that this second definition is closest to Kolodner and Shank’s view on CBR; i.e. the CBR model is a recipe for generating context-dependent knowledge.

7. CONCLUSION

Advocates of reconstructive memory such as Barlett \[4\], Kolodner \[13\], or Shank \[24\] argue that we make it up as we go along. In case-based reasoning (CBR), inference repeats every time there is a new query. Our reading of the papers at this conference is that, except for a few papers that deal with reasoning-by-analogy (e.g. \[3\]), most of this community avoids the model-lite approach of CBR.

Proponents of parametric models argue that there exist domain-independent models which can be tuned to local details. In this approach, reasoning can take the form of a data miner learning values for tune-able attributes of a parametric model like Equation 1. In this way, learning can happen once and users can use the tuned model for all future queries.

Unfortunately, these supposedly domain-independent models (like COCOMO) suffer from massive internal variance (see Figure 1). Previously, we have tried to manage internal variance of this problem with SEESA: an AI algorithm that sought stable conclusions across the space of possible tunings within a parametric model. While a successful prototype, SEESA W has disadvantages:

- Dependency on a particular parametric model
- A requirement that all the data be in a format acceptable to that model
- Too many arbitrary internal design decisions
- Slow runtimes
A code base that proved too large to maintain, modify, and add support for more models

With a result supporting CBR, this paper finds little to recommend from SEESAW over the \(\mathcal{W} \) case-based reasoning tool. Standard CBR applies a query \(q \) to find relevant examples from a set of cases \(C \) using the retrieve-reuse-revise-retain loop of Figure 2. \(\mathcal{W} \) extends standard CBR by learning an adaption of \(q \), called \(q' \), that retrieves better quality examples. Based on the analysis of [8] and this paper, we recommend \(\mathcal{W} \) on several grounds:

- \(\mathcal{W} \) finds similar, or better, results than SEESAW (see Figure 9).
- \(\mathcal{W} \) is simpler to code: 200 lines of AWK as opposed to the 5000 lines of LISP code used in SEESAW.
- \(\mathcal{W} \) is faster to run: the above experiments took minutes for \(\mathcal{W} \), but hours for SEESAW.
- \(\mathcal{W} \) is simpler to maintain since, in CBR, “maintenance” means nothing more than “add more cases”.
- \(\mathcal{W} \) makes no use of an underlying model and is therefore free from the assumptions of parametric modeling. Hence it can be applied to more data sets. For example, SEESAW requires data to be in the COCOMO format but \(\mathcal{W} \) has been applied to numerous data sets in other formats [8].

Having said that, there is one situation where we’d recommend SEESAW over \(\mathcal{W} \). Like all CBR systems, \(\mathcal{W} \) needs cases. If there is no local data, then SEESAW would be the preferred (only) option.

What then should we say about the premise of PROMISE; i.e. that “modeling” is an appropriate method for understanding SE projects? Our answer is two-fold. Firstly, there is insufficient evidence in this paper to make the conclusion that CBR always beats model-heavy methods like parametric models. Nevertheless, these results clearly motivate further exploration and comparison between the value of CBR and model-heavy techniques. For example, at our lab we are exploring very fast clustering methods to support scaling CBR to very large data sets.

Secondly, there are at least two kinds of “models.” In the traditional model-heavy definition, models are specific products that can be applied to multiple domains. In the CBR model-lite definition, a model is a process that generates many products, each of which is customized to the particulars of a local domain. In this paper and [19] we have seen the following advantages of CBR: easy implementation, fast runtimes, easy maintenance, able to be applied to more data, and out-performance of model-heavy methods. If these advantages apply in other problem domains, we speculate that the future of PROMISE will be “models-as-process” and not “models-as-products”.

Acknowledgments

This work was partially funded by the United Stated National Science Foundation (CCF-1017263).

8. REFERENCES

Similarly, there are two sets of defect multipliers and scale factors:

COQUALMO divides into three models describing how defects change in requirements, design, and coding. These tunings options have the range:

\[
\begin{align*}
\text{requirements} & \{ \begin{cases}
0 \leq m_d^+ \leq 0.112 \\
-0.183 \leq m_\gamma \leq -0.035
\end{cases} \} \\
\text{design} & \{ \begin{cases}
0 \leq m_d^+ \leq 0.14 \\
-0.208 \leq m_\gamma \leq -0.048
\end{cases} \} \\
\text{coding} & \{ \begin{cases}
0 \leq m_d^+ \leq 0.14 \\
-0.19 \leq m_\gamma \leq -0.053
\end{cases} \}
\end{align*}
\]

The tuning options for the defect removal features are:

\[
\forall x \in \{1..6\} \quad SF_i = m_8(x - 1) \\
\text{requirements} : \quad 0.08 \leq m_3 \leq 0.14 \\
\text{design} : \quad 0.1 \leq m_3 \leq 0.156 \\
\text{coding} : \quad 0.11 \leq m_3 \leq 0.176
\]

where \(m_8\) denotes the effect of \(i\) on defect removal.